GATA4 protects granulosa cell tumors from TRAIL-induced apoptosis.
نویسندگان
چکیده
Disturbances in granulosa cell apoptosis have been implicated in the pathogenesis of human granulosa cell tumors (GCTs). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent cytokine that induces apoptosis in a variety of malignancies without toxic effects on benign cells. The aim of this study was to investigate the expression and functionality of the TRAIL receptors DR4 and DR5 in human GCTs. Additionally, we examined the role of GATA4, a transcription factor expressed in normal and malignant granulosa cells, in TRAIL-induced GCT apoptosis. For this purpose, a tissue microarray of 80 primary and 12 recurrent GCTs was subjected to immunohistochemistry for DR4 and DR5, and freshly isolated primary GCT cultures were utilized to evaluate the functional effects of TRAIL on GCT cells. To clarify the role of GATA4 in the regulation of TRAIL-induced apoptosis, a human GCT-derived cell line (KGN) was transduced with lentiviral vectors expressing small hairpin RNAs targeting GATA4 or transfected with adenovirus expressing either wild-type or dominant negative mutant GATA4. We found that receptors DR4 and DR5 are expressed in a vast majority of GCTs as well as in primary GCT cultures, and that TRAIL induces apoptosis in the primary GCT cultures. Moreover, we showed that overexpressing GATA4 protects GCTs from TRAIL-induced apoptosis in vitro, whereas disrupting GATA4 function induces apoptosis and potentiates the apoptotic effect of TRAIL administration. Our results demonstrate that the TRAIL pathway is functional in GCT cells, and suggest that transcription factor GATA4 may function as a survival factor in this ovarian malignancy.
منابع مشابه
FOXL2, GATA4, and SMAD3 Co-Operatively Modulate Gene Expression, Cell Viability and Apoptosis in Ovarian Granulosa Cell Tumor Cells
Aberrant ovarian granulosa cell proliferation and apoptosis may lead to granulosa cell tumors (GCT), the pathogenesis of which involves transcription factors GATA4, FOXL2, and SMAD3. FOXL2 gene harbors a point mutation (C134W) in a vast majority of GCTs. GATA4 is abundantly expressed in GCTs and its expression correlates with poor prognosis. The TGF-β mediator SMAD3 promotes GCT cell survival t...
متن کاملOptimizing the efficacy of TRAIL-induced apoptotic cell death in granulosa tumor cell lines
Human ovarian cancers of granulosa cell origin currently represent approximately 3 to 5% of diagnosed cancers involving the ovary. Nevertheless, there is little known regarding either the etiology or selective treatment of granulosa cell tumors (GCT) as compared to those originating from surface epithelial cells. The ability of TRAIL to target cancer cells for apoptosis without affecting normal...
متن کاملEpidermal growth factor protects epithelial-derived cells from tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by inhibiting cytochrome c release.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in combination with chemotherapeutic drugs induces a synergistic apoptotic response in cancer cells. TRAIL death receptors have also been implicated in chemotherapeutic drug-induced apoptosis. This has lead to TRAIL being proposed as a potential cancer treatment. In nude mice injected with human tumors, TRAIL reduces the size of th...
متن کاملRoles of tumor necrosis factor-related apoptosis-inducing ligand signaling pathway in granulosa cell apoptosis during atresia in pig ovaries.
To reveal the molecular mechanism of selective follicular atresia in porcine ovaries, we investigated the changes in the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor (DR4) proteins and TRAIL mRNA in granulosa cells during follicular atresia. Immunohistochemical, Western immunoblotting and reverse transcription-polymerase chain reaction analyses ...
متن کاملThe susceptibility of granulosa cells to apoptosis is influenced by oestradiol and the cell cycle.
Experiments were conducted to test whether oestradiol (E2) protects granulosa cells from Fas ligand (FasL)-induced apoptosis and whether protection involves modulation of the cell cycle of proliferation. Treatment of cultured bovine granulosa cells with E2 decreased susceptibility to FasL-induced apoptosis. The effects of E2 were mediated through oestrogen receptor and were not mediated by stim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrine-related cancer
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2010